視頻智能分析是AI落地安防的重要技術之一。所謂視頻智能分析是利用基于深度學習的各類智能算法來分析前端設備采集的視頻信息,實現對各種安全事件主動預警,并將報警信息反饋至監控平臺及客戶端。不過,目前從安防企業發展的產品和技術實現的功能來看,視頻智能分析還處于感知智能發展階段。
視頻智能分析主要包括行為分析和特征識別。行為分析是基于背景模型為基礎,技術應用表現在人員聚集、物品遺留、物品丟失、人員徘徊、人員倒地、安全帽/工裝檢測、區域人數統計、進入/離開區域以及跨越警戒線、火焰檢測等方面。
特征識別主要包括車牌識別和人臉識別。較于傳統視頻分析,視頻智能分析的重大突破在于,能夠將場景中的背景和目標分離,識別出真正的目標,也就是具備對風、雨、雪等多種背景的過濾能力。從技術角度來看,就是通過建立人體活動算法模型,并借助計算機的高速計算能力,排除監視場景中的干擾因素,準確判斷并動態跟蹤人類在視頻監視圖像中的各種行為,達到有效預警。
當前,主流廠商推出的智能產品,視頻智能分析技術均已實現了排除干擾背景因素,動態實時跟蹤目標并分析目標行為的目的,大大提升了報警準確率。并且實現對人臉、人體、車輛等并行綜合檢測,精準全息化感知業務場景數據,提升綜合研判能力,當前這類技術主要應用周界防范、人臉布控應用中。
不過,相較到人臉識別和車牌識別等特征識別,行為分析技術發展還不夠成熟,但無疑它們是未來視頻智能分析一個重要方向。其中以步態識別為代表體態識別以難隱藏性、非接觸性和非侵入性等特點從眾多技術中脫穎而出,成為目前生物特征識別領域的一匹“黑馬”。步態識別通過身體體型和行走姿態來識別目標的身份,是一種頗為復雜的行為特征,體態識別技術不需要人為配合,能夠適應更為普遍的應用場景,特別適合用來進行遠距離身份識別。
除了視頻的智能分析識別之外,物聯網技術的結合應用也是人工智能的發展方向之一,將溫度、濕度、水浸(水位)、空氣濃度等環境信息集成進視頻中并智能分析和識別,目前的技術發展已經可以做到物聯網視頻智能處理。例如多家廠商提出全息感知型攝像機便是其中的代表。
雖然視頻智能分析在準確率和融合檢測能力有很大的突破,但是從當前來看,智能安防行業的視頻智能分析基本還處于視頻結構化分析的感知智能階段。公安系統包括其他監控系統,在數據應用上只是就結構化數據進行簡單應用,數據價值并未完全發揮出來。
未來整個智能安防行業中的智能視頻分析將走向知識圖譜即認知智能、決策智能階段。所謂的知識圖譜是一種針對應用語義理解技術實現更高質量、可計算、計算機可理解的大數據結構,也就是針對多類異構數據源的知識結構化、關聯化分析,屬于實用型認知應用,能夠更高效的實現決策智能,當前已經有一些主流廠商和技術商實現了在視頻智能分析技術應用上實現一部分認知智能。